Note on the determination of

Characteristic Value of Observations

by Ervin Poulsen, 2001-02-03 supplied: 2001-02-18

According to the EN 1504-standards, the Eurocode prEN 1992-1-1, 'Eurocode 2 Design of concrete structures part 1: general rules and rules for buildings', and EN 206-1 the lower characteristic value shall be the 5 % fractile and the upper characteristic value shall be the 95 % fractile.

In order to determine the characteristic value of observations obtained from testing concrete or similar materials it is convenient to make the following assumptions:

- The lower characteristic value is defined as the 5 % fractile.
- The upper characteristic value is defined as the 95 % fractile.
- The characteristic value shall be determined from observations at a level of confidence of $\alpha = 84.1$ %.
- The observations from the testing are assumed statistically to be logarithmic normally distributed.
- The coefficient of variation is unknown.

In the case of $n \ge 3$ observations (e.g. strengths) from one single section of inspection, calculation of the characteristic value of the following observations:

$$f_1, f_2, f_3, ..., f_n$$
 (1)

are carried out as follows: first the mean value M_{inf} and the standard deviation S_{inf} of the Napir logarithm of the observations (1), i.e. the values:

$$\ln f_1, \ln f_2, \ln f_3, ..., \ln f_n$$
 (2)

are carried out. The easiest way is to apply a spreadsheet, e.g. Excel, cf. example 1. Then the lower characteristic value (5 % fractile) is:

$$f_{kl} = \exp(\mathbf{M}_{\ln f} - k_n \cdot \mathbf{S}_{\ln f}) \tag{3}$$

and the upper characteristic value (95 % fractile) is:

$$f_{ku} = \exp\left(\mathbf{M}_{\ln f} + k_n \cdot \mathbf{S}_{\ln f}\right) \tag{4}$$

The factor k_n is based upon the non-central t-distribution and obeys the values shown in Table 1:

		4		6	7	8	9	10	11	12	15	20	30	50	100
$\frac{n}{1}$	4 3 1	2 20	2 01	2.70	2 57	2 47	2.40	2.34	2.29	2.25	2.16	2.07	1.98	1.89	1.81
κ_n	4.11	3.20	2.71	2,10	2.51	~									_

Table 1. Values of the factor k_n in equation (3) and (4).

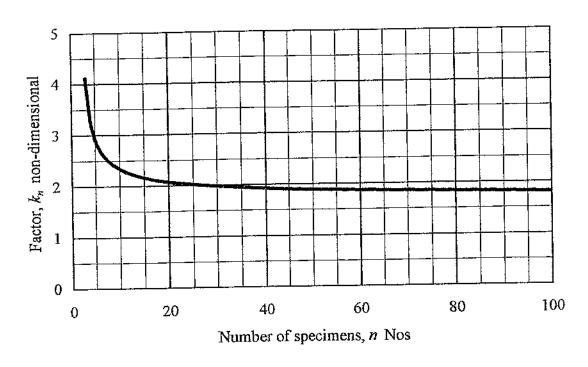


Figure 1. The factor k_n versus the number of observations n.

EXAMPLE 1. The following compressive strengths have been determined by means of the pull-out test method (CAPO-test) from one inspection section:

27.5 25.0 24.5 25.0 22.5 24.0 25.5 28.5 25.0 30.0 MPa

Calculation of the lower characteristic value (5 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 2:

	Compressive strength, fc MPa	$\ln f_c$
f_{c1}	27.5	3,14186
f_{c2}	25.0	3,21888
f_{e3}	24.5	3.19867
c c4	25.0	3.21889
c5	22.5	3,11352
c6	24.0	3,17805
c7	25.5	3,23868
c c c8	28.5	3.34990
co c9	25.0	3,21888
c10	30.0	3.40120
Mean value	25.75	3,24508
Standard deviation	2.252	0,08576
Coefficient of variation	0.087	
Lower characteristic value	21.00	

Table 2. Calculation of the lower characteristic value of observed compressive strength.

In Table 2 the mean value and the standard deviations of the logarithms of the compressive strengths are determined as $M_{lnf} = 3.24508$ and $S_{lnf} = 0.08576$ respectively. Thus, the lower characteristic value (5 % fractile) yields:

$$f_k = \exp(M_{\ln f} - k_n \times S_{\ln f}) = \exp(3.24508 - 2.34 \times 0.08576) = 21.00 \text{ MPa}$$

EXAMPLE 2. In a 450 m² overlay casting the following values of pull-off strengths were determined using 75 mm diameter dollies:

Calculation of the lower characteristic value (5 % fractile) is carried out in the following way, applying a spreadsheet, cf. table 3:

way, appromise a opening	Pull-off strength, f_t MPa	$\ln f_t$
£.	1.85	0.6152
f_{t1} f_{t2}	1.91	0.6471
ra fra	1.56	0.4447
	1.42	0.3507
f ₁₄	1.88	0.6313
f15 f16	1.69	0.5247
Mean value	1.718	0.5356
Standard deviation	0.198	0.1187
Coefficient of variation	11.5 %	
Lower characteristic value	1.24	

Table 3. Calculation of the characteristic value of observed pull-off strength.

In Table 3 the mean value and the standard deviations of the logarithms of the pull-off strengths are determined as $M_{lnf} = 0.5356$ and $S_{lnf} = 0.1187$ respectively. Thus, the lower characteristic value (5 % fractile) yields:

$$f_{tk} = \exp(\mathbf{M}_{lnf} - k_n \times S_{lnf}) = \exp(0.5356 - 2.70 \times 0.1187) = 1.24 \text{ MPa}$$