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Abstract: For a concrete beam resting on a bed of sand, an analytical solution technique is derived by which the mobility can be
identified. To achieve realistic predictions, significant damping in the bed needs to be introduced. The modest damping of the concrete has
little effect on the mobility for small frequencies whereas it has a significant effect for higher frequencies. An imperfection in the bed in
terms of a void increases the mobility dramatically for low frequencies whereas the mobility for higher frequencies is almost unchanged.
An imperfection in the beam in terms of honeycombing of the concrete, on the other hand, manifests itself by increasing the mobility for
high frequencies while leaving the mobility for small frequencies less influenced. These latter conclusions are in good agreement with
field experience for concrete slabs resting on soil.

DOI: 10.1061/(ASCE)0733-9399(2004)130:9(1062)

CE Database subject headings: Beams; Concrete structures; Foundations; Fourier transform; Impulsive loads: In situ tests; Plates;

Viscoelasticity.

——

S~

——

Introduction

The impulse response test method is a nondestructive, stress wave
test, used to evaluate structural components and elements. Its ap-
plication to concrete structures is less well known than its appli-
cation to mechanical structures, and the method has received far
less publicity than the recently developed impact-echo test (San-
salone and Street 1997). Both methods are described in the
American Concrete Institute (ACI) report (1998).

Experimental determination of various forms of the frequency
response function has been applied for many years in order to
characterize the structural response of a diversity of constructions
and a comprehensive review is given by Ewins (1984). The
method was first adopted in the aviation industry as reported by
Kennedy and Pancu (1947); harmonic loadings with different an-
gular frequencies are applied at different locations, and measure-
ment of the response enables one to identify the eigenfrequencies
and the eigenmodes. This method is often called the {orced vibra-
tion method. With w,,,, being the maximum velocity at a point
and f ., the maximum load, the mobility is defined as

Wmax

fmax

(1)

= mobility
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where the mobility evidently is a function of the angular fre-
quency of the loading. Mobility is the inverse of impedance, and
the acoustic impedance method is used widely in the acronautical
industry in the testing and inspection of aerospace components
(Jones and Stiede 1997).

Later, it was realized that it is much easier and more versatile
to measure the mobility by striking the element to be tested by a
hammer and then make a Fourier transform of the load and of the
velocity; this method was earlier named the transient dynamic
response or sonic mobility method whereas today it is termed the
impulse response method.

The experimental determination of mobility curves for con-
crete structures occurred at a much later date and focused on the
identification of possible faults and defects. In order to evaluate
the integrity of concrete drilled piles, the forced vibration method
was developed in France in the 1960’s and the corresponding
theory was reported by Paquet (1968) and Davis and Dunn

_(1974). Since then, the range of application of the impulse re-

sponse method to different structural elements has increased to
incorporate the following issues: Voiding beneath concrete slabs
(Davis and Hertlein 1987), delamination (Davis and Hertlein
1995), honeycombing and cracking (Davis and Hertlein 1995;
Davis et al. 1997), evaluation of alkali-silica reaction in concrete
piles Davis and Kennedy 1998, and debonding (Davis et al.
1996).

While there has been considerable development of theory to
support the results obtained from testing deep foundations
(Paquet 1968: Davis and Dunn 1974). no such theory has been
developed for testing slab-shaped structural elements. This paper
explores the mathematical justification for impulse response test
results [rom concrete slabs supported on a soil subgrade, for the
cases where: (1) The slab and soil are in good condition; (2) a
void exists in the soil immediately below a portion of the slab;
and (3) part of the concrete slab is poorly consolidated.

Test Technique and Typicai Resulis

The impulse response method uses a low-strain impact to send
stress waves through the tested element. The impactor is usually a
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Fig. 1. Typical mobility plot for a sound concrete slab

1-kg sledgehammer with a built-in load cell in the hammerhead.
The maximum compressive stress at the impact point in concrete
is directly related to the elastic properties of the hammer tip.
Typical peak stress levels range from 5 MPa for hard rubber tips
to more than 50 MPa for aluminum tips. Response (o the input
stress is normally measured using a velocity transducer (geo-
phone) placed adjacent to the impact point (direct mobility). This
receiver is preferred because of its stability at low [requencies and
its robust performance in practice. Both the hammer and the geo-
phone are linked to a portable field computer for data acquisition
and storage.

When testing platelike structures, the impact-echo method
(Sansalone and Street 1997) uses the reflected stress wave from
the base of the concrete element or from some anomaly within
that element (requiring a frequency range normally between 3 and
40 kHz). The impulse response test impact, on the other hand,
generates a compressive stress approximately 100 times that of
the impact-echo test. This greater stress input means that the plate
responds to the impulse response hammer impact in a bending
mode over a very much lower frequency range (0—800 Hz for
plate structures), as opposed to the reflective mode of the impact-
echo test.

Both the time records for the hammer force and the geophone
velocity response are processed in the field computer using the

fast Fourier transform algorithm. The Fourier transform W of the
velocity and the Fourier transform F of the load are determined;

finally, the absolute values |W| and |F} of the complex quantities

W and F are determined and the mobility is then obtained by the
relation

1]
7]

We shall later return to the equivalence between Egs. (1) and
(2). The mobility curve plotted over the range 0 to 800 Hz—a
typical example is shown in Fig. 1—contains information on the
condition and the integrity of the concrete in the tested element as
well as of its soil subgrade. The following observations are used
in this evaluation:

« Tt can be shown mathematically that the initial slope of the
mobility curve defines the static compliance. i.e., the static
flexibility at the test point in question (static flexibility means
that if the structure is loaded statically by a unit force, then the
deflection becomes equal (o the static flexibility); in practice,
this slope is defined as the secant between 0 and 50 Hz.

» Field experience shows that the mean mobility value over the
100-800 Hz range is related to the density and the thickness
(i.e., stiffness) of the plate element. A reduction in plate thick-
ness corresponds to an increasc in mean mobility. As an ex-
ample, when total debonding of an upper layer is present, the

= mobility (2)
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Fig. 2. Typical mobility plots for sound and honeycomb concrete

mean mobility reflects the thickness of the upper debonded
layer (in other words, the slab becomes more mobile). Also,
any cracking or honeycombing in the concrete will increase
the mobility over the tested frequency range. Typical plots
illustrating these observations are shown in Fig. 2.

+ Field experience shows that when there is loss of support be-
neath a concrete slab on grade, the initial slope of the mobility
curve increases greatly. The peak mobility below 100 Hz be-
comes appreciable higher than the mean mobility from 100-
800 Hz. The ratio of this peak to mean mobility is used as an
indicator of the presence and degree of either debonding
within the element or voiding/loss of support beneath a slab on
grade. Typical plots illustrating these observations are shown
in Fig. 3.

« The test results shown in Figs. 1-3 were obtained from rein-
forced concrete slabs and walls of thickness between 250 and
300 mm, and joint spacing between 2.7 and 5.4 m. The ham-
mer peak forces varied between 4 and 7 MPa, and all velocity
responses were recorded using geophones.

In the following, we shall provide a theoretical investigation of
these issues.

Fundamental Equations

Our main interest is the behavior of concrete slabs supported by a
bed of sand. However, in order to simplify this rather complex
problem to one that is amenable to an analytical solution tech-
nique, we consider instead a beam supported by a bed of sand;
quantitatively, these two problems will differ, but qualitatively
they will exhibit similar features. Slab responses are conditioned
by the position of the test point on the slab or wall. Tests results
toward the slab edges and corners evidenty exhibit a higher mo-
bility and lower stiffness than those toward the slab centers. Test
results on wall panels often show a Jower mobility and higher

mobility, [ﬁ\/—]
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Fig. 3. Typical mobility plots for sound and voided slab support
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Fig. 4. (a) Problem considered and (b) transverse shear force V and
bending moment M

stiffness close to the pancl supports, such as columns or floors,
because of greater support at those poinis.

The problem at hand is then shown in Fig. 4(a), where g is the
external load per unit length (N/in), k is the bed modulus with
dimension (N/m?), and w is the deflection. Positive directions for
the transverse shear force V and the bending moment M are
shown in Fig. 4(b) and we have

V= j o dA, M= f 0 zdA 3)
A A

where A = cross-sectional area of the beam.
The mass density of the beam is denoted by p and the beam

~~mass per unit length m is therefore m=pA. Assuming the bed to

oe viscous in the form of a Kelvin material, the equation of mo-
tion in the vertical direction then becomes
2%
—=—g-t+hkwtcyw+mi (4)
ax
where ¢,=viscous damping coefficient of the bed with the di-
mension (Pas); moreover, a dot denotes the time derivative. Ig-
noring rotational inertia forces, moment equilibrium requires

aM
—=V (5)

dx
The combination of Egs. (4) and (5) results in
*M

ax>

=—q-+kw+cy,wt+mw (6)

The beam is assumed to be of the Bernoulli type and choosing
the x axis to be located at the centroid of the cross section, we
have

Exx™ —zw” N
where w”=0%w/dx>. Assuming also the beam material to be vis-
cous in the form of the Kelvin model, the constitutive equation is
given by

GXX:EEXJ—*_TIE.XX (8)

where E= Young’s modulus and v = viscosity parameter with the
dimension (Pas). The combination of Egs. (7) and (8) gives

0= — Ezw”—mzw” 9)

The insertion of Eq. (9) in the equation on the right in Eq. (3),
then provides

M=—EIw"—nIw" (10)

where I= [ ,z2dA=moment of inertia. Finally, the use of Eq. (10)
in Eq. (6) provides the differential equation sought

Em"+aIw" +kw+c w+miv=gq (1D

This equation holds for any part of the beam in which E, I, m, &,
¢y, and m are constants.
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Fig. 5. Beam part immediately left and right of position x* is called
M and N, respectively

Fourier Transform

In Eq. (11), the deflection w is a function of position x and time ¢,
ie.. w=w(x,t). However, instead of time ¢ and in accordance
with the test procedure, it turns out to be convenient to work in
the frequency domain . For this purpose, the Fourier transform
W(x,w) of the function w(x,r) is defined by

W(x,w)=f wix, e d1 (12)

where 7= imaginary unit, i.e., i = V=1. In analogy with Eq. (12),
the Fourier transform W of v is defined by

W(x,0)= J w(x, e d:

and, ¢f. for instance Wolf (1951), it appears that
Wix,0)=ioW(x,0), ie, W)= —w*W(x,0) (13)

In the case considered, the external loading is a point force
located at point x*, i.e.,

g(x,0)=8(x—x*)f(1) (14)

where 8(x—x*) denotes Dirac’s delta function. In the present
case, 8(x—x*) therefore has the dimension (1/m) and the
strength f(z) of the point force has the dimension of (N). In
analogy with Eq. (12), we obtain

Q(x,w)=fm q(x,t)e”@ds, ie., Q(x,0)=8(x—x¥)F(w)
(15)

where
F(m)=f'f(z)e"‘w’dz (16)

With these results and taking the Fourier transform of both
sides of Eq. (11), it follows that

(EI+inlo)W —(mew?—k—ioc,) W=8(x—x*)F(®)
(amn

Boundary Conditions

The beam is assumed to be supported by the bed only. Therefore,
M=V=0 holds at x=0 and x=L. With Egs. (10) and (5) and
taking the Fourier transform, it follows that

W' (0,w)=0: W"(0,w)=0

Wi(L,w)=0; W"(L,0)=0 (18)

The point force f(7) acts at position x*. The part of the beam
immediately to the left- and right-hand side of this point is called
M and N, respectively, as shown in Fig. 5(a). From Fig. 5(b), we
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77" The insertion of Eqs. (5) and (10) and taking the Fourier trans-

form, we obtain

F((D) _ Yui 4 VVHI ]9
El+inleo "M 7N 19

Evidently, the displacement w, the slope w' and the bending
moment M are the same immediately to the left- and right-hand

A solution to the homogeneouns differential equation (22) is
evidently of the form

W=Ce* (25)
where C and X\ = constants. Insertion into Eq. (22) provides
AN=A=a+ib (26)

Define the following quantities

\/a2+b2+a

side of point x*, Taking the Fourier transform, it follows that p= . g= .
2 2
Wy=Wy: W,=W,; Wi,=Ww; (20)
If E 1, m, k, ¢}, and m=constants throughout 0=<x=1L, then \/pz—i— q2+p \/1)2+(]2—p
the position x* divides the beam into two regions (M and N) and r= “_‘T_Q §= B 27

in each region we have, from Eq. (17), that
mo’—k—ioc,

Evmie V70 o

then the solution to Eq. (26) becomes:
e If =0, then

N=r+isy N=—r—is; Ny=s—ir, M=—s+ir (28)
Integration of this fourth-order differential equation provides four » If p=<0, then
arbitrary constants. For the entire beam, eight arbitrary constants N=r—is; Npy=—r+is; Ay=s+ir; N=—s—ir (29)

emerge and these constants are determined by the eight conditions

___ provided by Egs. (18)—(20).

Integration of Fourth-Order Differential Equation

21)

The differential equation (21) can be written as

The solution to the homogeneous differential equation (22) then
becomes

W(x,0)=C,K{{x,0)+ CrKy(x,0)+ C3K3{x,0)+C K,(x,0)
(30)

where C,, C,, C; and C,=arbitrary constants and the functions
K. K,, K5, and K, are given by

W' AW=0 (22) Kl(x,w):g)\;x; Kz(x,m)z(_,)\:x; K3(.X’,u))=€}‘-”
where the complex quantity A is given by Ky(x,0)=er (31
A=a+ib (23)

and where the real numbers a and b are defined by
(mw?—k)EI—c,mlw? (mw?—k)nI+c,El
T T ED T (DT (ENT+ ()22

(24)

It appears that if damping effects are ignored, i.e., ¢,=n =0, then
a=(mw?—k)/El, b=0, i.e., A becomes a real number.

Perfect Beam Supported by Perfect Bed

The situation is shown in Fig. 6. Let the arbitrary constants C;,
C,, C4, and C, refer to region M of the beam whereas the arbi-
trary constants Cs, Cg, Cy, and Cy refer to region N of the
beam. Using Eq. (30), as well as the boundary conditions {18)—
(20), we get the following equation system

[ KY(0) K5(0) K5(0) K7(0) 0 0 0 0 0 T
KY(0) K70y K¥O)  KE0) 0 0 0 0 [ 1] °
0 0 0 0 K'L)  KNL)  KUWL)  K(L) gi 0
0 0 0 0 KL KR K KR || el F(Ow)
KU SRR KT SKPGN KTGN KEGN K K6 || G g
Kie%) IO K K K S Ka() K0 K || e 0
Ki(x*) K3 (x*) Ki(x*) Ki(x*) —K{x*) —Ka{x*) ~K§(x*) —Ki(x*) i C8J 0
L OKI(xF)  KG(eR) KSeY) KG(xR) —KU(x%) —KG(xY)  —K(rt)  —KY(x%) 0

(32) -
where the dependence of K; on the angular frequency  is not explicitly shown. In matrix format, this equation system can be written as
AC=f (33)

where A=8X 8§ coefficient matrix; C contains the parameters

Rl
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Fig. 6. Perfect beam supported by perfect bed; the point force is
located at position x*

C,,C,, ....Cy; and f=right-hand side of Eq. (32). It follows
immediately that det A=0 provides the (complex) eigenfrequen-
cies of the system. When det A#0, we obtain from Eq. (33)

8
- . _ -1
C=A"f, ic. C"",Zl A

Except for f5, all f;-components are z€ro, i.e., we obtain

Fw)

Ss=Evinle (34

C,-=A,."51f5 where
At the position of the point force, i.e., x=x%*, we have
W(x*,0)=C1K,(x*,w)+ CoK,(x¥,0)+ C3K5(x*.0)

- + CyK 4 (x*,0)

which with Eq. (34) takes the format

W(x*,w)=H(w)F(w) (35)
where
1 4
H(m)=m; AGK(x*,w) (36)

is the complex frequency response function.

In accordance with the test procedure described previously,
here we have derived the complex frequency response function
taking the Fourier transform of the relevant equations. However,
from a physical point of view and in order to enhance Jater inter-
pretations, a somewhat different approach shall now be adopted.

Assume that the point force varies harmonically with the an-
gular frequency o, i.e.,

F()=foe. (37

where f,= constant real quantity and where it is implicitly under-
. stood that, say, F()y=Tm(foe™)=Ffo Im(e™"); fo is therefore the
force amplitude. The steady-state response then also varies har-
monically with the phase angle ¢, i.c.,

wix, ) =wo(x)e’ @) or wix,1)=wy(x)e™
where Wo{x)=wq(x)e'® (38)

where wy(x)=real quantity, namely the deflection amplitude.

It appears from Eq. (38) that w=iow and = —w’w and the
similarity with the properties of the Fourier transform is evident,
¢f. Eq. (13). The insertion of Egs. (37) and (38) into Eqgs. (11) and
(14) then reveals that, with W replaced by W, and F replaced by
fo, all derivations will be similar to the previous ones and the
result immediately becomes

Wolx*)=H(w)fy (39)

In fact, this approach to determination of the complex frequency
response function finds its analogue in the forced vibration
method where harmonic loadings are applied at different frequen-
cies and the response is measured, as discussed previously. It
follows from Eq. (39) that

, -*)
20T )] @0
fo

where |H(w)| denotes the absolute value of the complex quantity
H{w). Therefore, the absolute value of the complex frequency
response function provides the relation between the amplitude of
deflection and amplitude of force; i.e. H(w)| is the dynamic
flexibility, i.e., the dynamic compliance, at the point in question.
For very small frequencies, inertia forces are of no importance,
ie.,

[o(x®)]=lwo(x®)|=H()||fo|=

|H(w=0)|=static compliance (41)

With these remarks, we return to the Fourjer transform tech-
nique. From Egs. (13) and (35), it follows that

Wix*,w)=Y(w)F(w) where Y(w)=inH(w) (42)

where Y(w)=complex mobility. In accordance with Eq. (2), we
then get

[W(x*,0)] .

W =|Y(»)}= mobility 43
and from the equation on the right-hand side of Eg. (42), we have
rol=olira, i, T 0 B

i.e.,
(d‘fl]((:)) ) =|H(w=0)|=static compliance  (44)
lw—0

as already mentioned in relation to the test results.

Results from the analysis presented above shall now be shown
and discussed; choosing a fixed value of the frequency w all cal-
culations were performed. By ignoring damping effects in the first
place, the following data were adopted:

beam height=0.2 m, beam width=0.1 m,
beam length=4 m
p=2300 kg/m?, E=25X%10'" Pa, k=107 Pa (45)

The mass density and Young’s modulus are typical for con-
crete. So-called rigid-body motion refers to the free vibration
mode in which the beam vibrates as a rigid body on the founda-
tion, cf. the discussion in Appendix A. It is shown there that the
eigenfrequency of the first bending mode is always above the
rigid-body eigenfrequency. With the data of Eq. (45) and the re-
sults in Appendix A, we obtain f,,=74.2 Hz (rigid-body motion)
and fy,,= 85.4 Hz (first bending mode), i.e., fim /f=1.15. These
frequencies are typical for the ones found in field experience.
Moreover, the frequency range up until 1,000 Hz (f=w/2w) is
typically considered in praxis.

With these data, the mobility curve for the undamped structure
takes the form shown in Fig. 7. The eigenfrequencies are clearly
visible and from Appendix A, the rigid-body eigenfrequency be-
comes [3=74.2 Hz whereas the eigenfrequencies for the first
seven bending modes become f,,= 85.4, 138, 241, 386, 570, 793,
and 1054 Hz; evidently, these eigenfrequencies correspond ex-
actly to the ones appearing in Fig. 7. )

To determine the eigenmodes corresponding to free vibrations,
equation system (33) reduces to AC=0. Each eigenfrequency
results in det A=0 and the corresponding C vector is then deter-
mined and used to identify the corresponding eigenmode. In this
fashion, the rigid-body motion and the first seven bending modes
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Fig. 7. Mobility curve for undamped conditions; impulse applied at
x=3m

for undamped conditions are shown in Fig. 8. The effect that the
beam is not loaded by either bending moments or transverse shear
forces at its ends is clearly visible.

Another point of interest is that the mobility curve shown in
Fig. 4 for the undamped structure has an appearance that is far
from those found in the field, cf. Fig. 1. The only possible expla-
nation is that damping must be included in the analysis and that
damping effects are expected to be significant.

In the first place, we only consider damping in the bed
whereas the concrete material is undamped. The results are shown
in Fig. 9 where, for instance, ¢,=1,200Pa corresponds 1o the
damping ratio £=2.8% for the rigid-body motion, cf. Appendix
A. Due to the damping of the bed, Fig. 9 shows that bending
eigenmodes also become damped and this is in accordance with
the results given in Appendices A and B.

Since the loading consists of a point force, we can never excite
a pure rigid-body motion even when the frequency equals the
rigid-body eigenfrequency. At that frequency, the response is
dominated by the rigid-body motion with small contributions
from the first bending mode. Moreover, Fig. 7 shows that the first
bending eigenfrequency is very close to the rigid-body eigenfre-
quency and Fig. 8 reveals that the point force acts at a position

f=742Hz f=386 Hz
1 1+
0 t t t -~z 0 5/\ /\ T
T s 4 \V V"
~1 + -1 4
f=85.4 Hz f=5T70 Hz

-
1 o/ a\J+«

f=793 Hz

WANAW
\AAVArA

F=1054 Hz

LA AN
VEAVZAVZRV/

Fig. 8. Rigid-body motion and the first seven bending modes for
undamped conditions.
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Fig. 9. Mobility curves considering damping of the bed for ¢,
=1,200 Pas (£=2.8%, dashed line), 6,000 Pas (§=14%, dotted
line), and 12,000 Pas (§=28%, full line). No damping in the con-
crete; impulse applied at x=3m.

(x=3 m) close to a node of the first bending mode. Therefore, the
first maximum of any of the mobility curves shown in Fig. 9 is
due to a combination of the rigid-body motion and the first bend-
ing mode and the eigenfrequencies for the rigid-body motion and
the first bending mode cannot be identified from the curves; how-
ever, for the higher bending modes, the corresponding eigenfre-
quencies are clearly visible from Fig. 9.

Comparing Fig. 9 with typical mobility curves obtained in the
field, it is concluded that significant damping in the bed must be
present. This observation is in accordance with the data used by
Chng (1992) in his analysis of concrete slabs on sand. Using the
finite element method, Chng ignored damping in the concrete slab
and adopted a damping ratio for the bed that corresponds approxi-
mately to §~=20%.

With this discussion, we shall in the subsequent calculations
adopt the following damping property of the bed

¢,=12,000 Pas, ie., £=28% (46)

In order to adopt realistic damping properties of the concrete,
it is recalled thal even when concrete viscosity is ignored, i.e.,
n =0, damping of the bed also gives rise to damping of the bend-
ing modes, cf. Fig. 9 and Table 2 in Appendix B. Based on Table
2, a realistic concrete viscosily must be below, say, n=1.88
X 10® Pas. For n=0, 470X 10° and 1.88x 10° Pas, the corre-
sponding mobility curves are shown in Fig. 10. Based on these
curves as well as the considerations in Appendix B, we choose in
the subsequent calculations the following damping parameter for
the concrete

mobility, [;%}

0 ——t t ' e 4 [ [HZ]
0 100 200 300 400 500 600 700 800 900 1000

Fig. 10. Mobility curves considering damping of the bed (c,
=12,000 Pas) and damping of the concrete for =0 (undamped,
dashed line), =4.70X 10° (dotted line), and n=1.88X 10® Pas (full
line); impulse applied at x=3 m.
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Fig. 11. Mobility curve for perfect beam resting on a perfect bed,
n=4.70X 10° Pas (concrete) and c,= 12,000 Pa's (bed); impulse ap-
plied at x=3m.

n=4.70X10° Pas A47)

The mobility curve for the perfect beam resting on a perfect bed
then takes the form shown in Fig. 11.

It is recalled from Appendix A that in a pure rigid-body mo-
tion, the constitutive data of the concrete beam has no influence at
all; this is evident since in a pure rigid-body motion, the beam
acts as a rigid body. As we load the beam by a point force, a pure
rigid-body motion can never be excited, but close (o the rigid-
body cigenfrequency, the response is dominated by the rigid-body
motion with only small contributions from the first bending mode.
These observations are supported by Fig. 10 where changes of the
concrete viscosity parameter 7 only influence the mobility curves
insignificantly for frequencies close to the rigid-body eigenfre-
quency. However, for higher frequencies, Fig. 10 shows that the
concrete viscosity m influences the mobility curves significantly.

As previously discussed, the maximum of the mobility curve
is determined primarily by the bed properties. In Fig. 11, the
mobility in general decreases significantly after its maximum
value around the rigid-body motion and this decrease is not found
in typical mobility curves obtained in practice, cf. Figs. 1-3.
However, we are considering a beam and a beam only allows
bending in one direction whereas a plate allows bending in two
directions. All other things equal, a plate is therefore more flex-
ible than the corresponding beam and this explains the difference
between Fig. 11 and Figs. 1-3. Here, however, we are especially
concerned about the influence of various defects in the structure
and how these defects qualitatively influence the mobility curve
and the difference discussed above is therefore of minor impor-
tance.

imperfect Beam on Imperfect Bed

With this discussion of the response of a perfect beam resting on
a perfect bed, we next investigate the mobility curves when im-
perfections occur in the beam or in the bed; indeed, the use of the
impulse response method is in practice concerned with identifica-
tion of such imperfections. A vast field experience on this issue
has been accumulated over the years, but no systematic theoreti-
cal interpretation seems to be present in the literature.

The situation for an imperfect beam on an imperfect bed is
illustrated in Fig. 12. The boundary conditions between, say, re-
gion 1 and 2 are evidently that the displacement, slope, bending
moment, and transverse shear force are identical immediately to
the left- and right-hand side of point x=L,. With the boundary
conditions at x=0 and x=L given by Eg. (18). the boundary

zt
P ]
1 2 3 e T
N
L L, Ly
I y

s

Fig. 12. Imperfect beam and imperfect bed; the beam and bed are
divided into three regions each with its own constant material param-
eters.

conditions where the point force acts, i.e., x=x*, given by Egs.
(19) and (20), we therefore end up with an equation system simi-
lar to Egs. (32) and (33) except that now the coefficient matrix
becomes a 16X 16 matrix. The solution procedure therefore fol-
lows that already described previously for the perfect beam on the
perfect bed.

Void in the Bed. Imperfections in the bed often take the form of
a void in the bed; in that region, the bed properties are taken as
k=0 and ¢,=0 and Fig. 13 shows the mobility curves for the
sound system and when a void is present (2.5 m<=x=<3.5 m). Due
to the existence of such a void, the eigenmode in terms of a
rigid-body motion is lost. In Fig. 14, the first eight undamped
eigenmodes are shown. As discussed above, no eigenmode in
terms of a pure rigid-body motion exists and all cigenmodes are
bending modes. Apart from that, a comparison with Fig. 8 shows
that the higher-order bending modes are nearly independent of the
bed propertics and this is in accordance with the discussion in
Appendix A. The mobility curves in Fig. 13 show that the small-
est eigenfrequency, which is dominated by the stiffness of the
bed, is lowered due to the void since the total stiffness of the bed
is lowered.

Since the total stiffness of the bed is lowered, Fig. 13 even
shows that the mobility, i.e., also the dynamic flexibility, is in-
creased dramatically for small frequencies when compared with
the sound system. On the other hand, Fig. 13 shows that the
mobility curve for higher frequencies, i.e., higher-order bending
modes, is almost independent of the bed properties and this ob-
servation is in accordance with the discussion above.

Honeycombing in the Beam. Imperfections in the beam often
take the form of honeycombing of the concrete. In that region, we

take as a sample Young’s modulus to be one quarter of the perfect
concrete, i.e., E=2.5% 1094 Pa. Also the viscosity 7 of the con-

mobility, Ll%]
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Fig. 13. Mobility curves for sound system (full line) and for a void
in the bed {dashed line), the void being located between 2.5 m=x
<3.5 m; impulse applied at x=3 m.
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Fig. 14. Void in the bed in the region 2.5 m<x< 3.5 m. First eight
undamped eigenmodes; no rigid-body motion exists

crete then needs to be modified in the honeycomb region. As we
are considering concrete material parameters, we ignore for the
moment the bed support and assume that the entire beam consists
of honeycomb concrete. From Eq. (52), it then follows that §
=R%nI/(2mwy). It appears readily from this expression—as
well as from Table 1 in Appendix B—that =4.70X 10° Pas, cf.
Eq. (47), corresponds to §=0.25% relative damping of the first
bending mode. Adopting this damping ratio and considering that
the E modulus now is 2.5X10'%4 Pa, we obtain n=2.35
% 10% Pas. Therefore, in the damaged part of the beam, we have
E=25%10'"% Pa and m=2.35%10° Pas. In the remaining
(sound) part of the beam, the parameters are as before given by
E=2.5%10" Pa and 1=4.70X 10° Pas.

The mobility curves for the sound system and for an imper-
fection in terms of a region (2.5 m=<x=3.5 m) with honeycomb-
ing of the concrete are shown in Figs. 15 and 16 shows the first
eight undamped eigenmodes. Now the eigenmode in terms of a
pure rigid-body motion is recovered whereas the remaining seven
eigenmodes are bending modes. A comparison of Figs. 16 and 8
shows that it is mostly the higher-order bending modes that are
influenced by honeycombing of the concrete. In that region of the

mobility, [;m—TV-]
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Fig. 15. Mobility curves for sound system (full line) and for
honeycombing (dashed line) in the beam (E=2.5X101°/4 Pa),
honeycombing being located between 2.5 m=x=<3.5m; impulse
applied at x=3 m.

—1 4

Fig. 16. Honeycombing of the beam (E=2.5X 10'%4 Pa), honey-
combing being located between 2.5 m=x< 3.5m. Rigid-body
motion and the first seven bending modes for undamped conditions

beam, the displacements of the ei genmodes are increased and the
distance between the nodes of the bending modes is decreased.

Conclusions

The analytical solution technique derived allows for a systematic
interpretation of impulse response tests and special emphasis has
been given to the qualitative influence of defects in terms of voids
in the bed and honeycombing in the concrete. In the modeling
process, it has been shown that the effects of damping are very
important. Significant damping of the bed needs to be considered,
but even much more modest damping in the concrete has an im-
portant influence on the mobility curve.

According to the simulations, a void in the bed will increase
the mobility dramatically for small frequencies whereas it leaves
the mobility curve unchanged for higher frequencies. On the other
hand, honeycombing in the concrete will increase the mobility for
high frequencies whereas the influence for small frequencies is
less significant. These conclusions are in good agreement with
field experience for concrete slabs resting on soil.

Appendix |. Free Vibrations with Damping

For a perfect beam on a perfect bed, free vibrations are investi-

gated. Since the external loading ¢=0, Eq. (11) reduces to
Elwm-i-nlww-*-kw-m‘- cpywtmw =0 (48)

Let the displacement be written in the form

w(x,r)=f{x)g(r) (49)

Insertion into Eq. (48) then provides the following two equations:
[=Cyf=0 (50)

§+26wpg+ 08 =0 (51

where C, = real constant to be determined from the boundary con-
ditions and the quantities £ and w are defined by
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Table 1. Bed Excluded

Table 2. Bed Included with ¢,=12,000 Pas

Concrete n 1 2 3 4 5 6 7 Concrete n 0 i 2 3 4 5 6 7
viscocity f(Hz) 424 117 229 378 565 790 1,051 viscocity f(Hz) 742 854 138 241 386 570 793 1,054
n=470X 10% £(%) 0.25 069 135 224 334 466 621 (m=0) £(%) 28.0 243 15.0 8.63 5.38 3.64 262 197
(m=188X 109 E(%) 100 275 541 894 134 187 248 (n=4.70><105) £ (%) 28.0 244 156 991 7.58 695 726 8.16
(n=7.52X106) £(%) 400 11.0 21.6 358 534 746 994 (m= 1.88x10% £ (%) 28.0 24.8 17.3 13.8 142 169 212 267
i.e., a rigid-body motion. The undamped eigenfrequency is given
by Eq. (57) and the damped eigenfrequency by wy J1—§&° where

. . . Iy ; o
ot Cinl . k-+C\EI £ is determined by l'he equation on t.he left hand.sule ~of Eq. (54.
= wy=—— (52) Therefore, a free vibration with this damped cigenfrequency 1s
mo m possible in which the beam is not deformed at all and the entire
With 0=<{=1, the solution to Eq. (51) is evidently given by structure acts as a one degree of freedom system: this vibration
— mode is referred to as the rigid-body motion. Since the beam is

g(r)=Age "t sin{wgV1—E£2t+ &) (53) & ‘

where A, and ¢=arbitrary constants determined from the initial
conditions. Tt appears that £= damping ratio; wo=undamped an-
gular eigenfrequency; and wyv1— £?=damped angular cigenfre-
quency.

Since no bending moments or transverse shear forces act at the
beam ends, the boundary conditions become

F10)=0; f7(0)=0; f"(L)=0; Sf"(L)=0 (59
A solution to Eq. (50) is evidently of the form

f(x)=Cpe™ (55)

where C, and A =constants. Insertion into Eq. (50) results in

2
P )\4_(06771—k <
AN'=C; 1e., =] (56)
If wim—k=0,ie, \*=C,=0 then
J:

W=\ 1))

Since C,=0=the solution to Eq. (50) subjected to the boundary
condition (54) becomes

f=a;taxx (58)
]
n 1 2 3
BL 4.730 7.853 10.996

where the higher modes for n=3 with close accuracy is given by
BL=(n+1/2)w. The modes identified above are the bending
modes of the beam. With this identification of the  parameter the
undamped eigenfrequency o is determined by Eq. (60) and the
damped eigenfrequency by woy1—§& where £ is determined by
the equation on the right-hand side of Eq. (52).

In view of Eq. (52) and since C,=pB*, it appears that the
investigated free vibrations involve both the beam parameters as
well as the bed parameters. Morcover, from Egs. (60} and (57), it
follows that the bending eigenfrequencies always are larger than
the rigid-body eigenfrequency. It is observed that the influence on
w, of the bed (i.e., the parameter k) decreases with increasing
B-values, i.e., increasing o, values. Therefore, higher-order
modes are only marginally influenced by the bed modulus %.

If wim—k<0, ie., \*=C,;<0 then

undeformed, its constitutive parameters do not influence the mo-
tion.
If wgm—k>0, i.e, AN'=C;>0 then

M=B A=—Br M=iBr M=—iB (59
where
mgm—k 14
:(_ET_) , le, B*=C, (60)

Since f(x)=real quaniity and recalling the relations e¢*=coshx
+sinh x and e =cos x+isinx, the solution to Eq. (50) then be-
comes

Ff(x)=«, cosh Bx—+o, sinh Bx+ oz cos Bx+ oy sin Bx
(61
in accordance with Kamke (1943). Fulfillment of the boundary
condition (54) requires

coshBL cosBL=1 (62)

It appears that B =0 is a solution, but this situation has already
been considered in Eq. (57). The other solutions to the equation
above are given, for instance, by Timoshenko et al. (1974), and
we have

4 5 6 7
14.137 17.279 20420 23.562 (63)
!
MEBL+D); N=—B(l+i); A=B(1-1i)
Ag=—B(1-1) (64)
where
(k—w%nf 1 ) . C, 5
B= —E ) e B—‘T (65)

Since f(x) is a real quantity, the solution to Eq. (50) then be-
comes
fix)=«, cosh Bx cos Bx+ oy sinh Bx cos Bx
+ o5 cosh Bx sin fx+ oy sinh Bx sin Bx (66)

in accordance with Kamke (1943). However. fulfilment of the
boundary condition (54) requires
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sinh? Bx—sin? Bx=0

Since B#0. this equation has no solution, i.e., the situation
—2m— k<0 will never occur. In conclusion, only wim—k=0 is

relevance and, as already mentioned, this implies that the rigid-
body eigenfrequency is the lowest of all eigenfrequencies.

Appendix ll. Damping Considerations

The viscosity parameter ¢, for the bed and the viscosity param-
eter 1 for the beam influence the damping ration & according to
Eq. (52). The stiffness data are taken in accordance with Eq. (45)
and the following results are used in order 0 motivate the choice
of m.

If the bed is completely ignored, the undamped frequency f

and damping ration £ for the first seven bending modes are then
shown in Table 1.

Considering the bed and accepting the bed viscosity ¢p
=12,000 Pas, we obtain {where n=0 corresponds to the rigid-
body motion)

Table 1 shows that the higher-order bending modes are much
more damped than the low-order bending modes. Table 2 illus-

_trates that even when damping in the concrete is ignored (m

=0), all bending modes become damped. For m=1.88
% 10° Pas, all bending modes become heavily damped and a rea-
sonable viscosity parameter for the concrete seems (o be m
=4.70% 10% Pas. The results are shown in Table 2.
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