Influence on pullout strength in relation to change in depth for the LOK-TEST and the CAPO TEST

How much is the pull-out force F changed if "h" is less than the required 25 mm?

To evaluate this question, the analytical approach presented by Jensen and Brästrup (1976) is used.

Fig. 1

From Fig. 1 we have:

$$\tan \alpha = \frac{(D-d)/2}{h}$$

and the pull-out force F is then given by (f_c = uniaxial compressive strength) – see Jensen and Brästrup, Eq. (10):

$$\frac{F}{f'_c} = \frac{\pi h \left(d \cos \alpha + h \sin \alpha\right) (1 - \sin \alpha)}{2 \cos^2 \alpha}$$

We always have D = 55 mm and d = 25 mm.

Using the equations above, evaluation for a lower value of "h" than 25 mm on a diminished pull-out force "F" can be made as follows:

h (mm)	25	24	23	22
F/f'c (mm²)	889	836	783	731
% loss in F		-6.0%	-12.0%	-17.9%

Therefore, it is imperative the depth "h" is 25 mm in the LOK-TEST as well as the CAPO-TEST.

Ref. Jensen, B. C. and Brästrup, M. W. (1976), "Lok-test determine the compressive strength of concrete", Nordisk betong, Vol. 2, 9-11, 1976