
Presentation on in-situ concrete strength 
evaluation systems 

Mr. Claus Germann Petersen, B.Sc., M.Sc.
GERMANN INSTRUMENTS, Denmark & USA

Dr. Andrzej Moczko, Professor, Faculty of Civil Engineering, 
Wrocław University of Science and Technology, Poland

Dr. Nicholas Carino, Concrete Technology Consultant, USA 

September 1st, 2023



Test  smart – Build right

2

Today´s strength subjects

1.Lab specimens  
2.Cores
3.Pullout

4.Rebound hammer
5. Ultrasound

6.Windsor Probe
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Overview
• Background

• Correlations

• Cases

• Pullout with LOK-TEST

• Pullout with CAPO-TEST

• Cores, Rebound Hammer, Ultrasound and 
Windsor Probe

• Conclusions

• Workshop information 

• Implementation of the systems 
www.NDTitans.com

http://www.ndtitans.com/
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In-Situ Strength, why?
• Potential strength superimposed by effects of 

transportation, pumping, compaction, maturity and 
curing conditions, in-place

• Testing the final product, the structure itself, not 
only relying on laboratory testing

• Low strength of laboratory specimens

• Changed mixes, intentionally / not intentional 

• Strength of existing structures for QA / QC, and 
calculation of load carrying capacity, e.g. for further 
loading

• Timing of safe and early loading operations

• Quality of the critical cover layer protecting the 
reinforcement in terms of penetrability
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Examples of collapses that could have 
been prevented by testing reliably the

compressive strength, in-situ
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Formwork Removal

• Multi-story building collapse 
in Boston, USA.

• Standard cylinders tested 
had passed the requirement. 

• Subsequent investigation 
showed the in-place strength 
to be 50% of the cylinder 
strength at the time of 
formwork removal.



Willow Island, W.Va., USA 
Cooling Tower Collapse, April 1978 

Courtesy of NIST

• Failure due to insufficient strength to support next “lift”
• 51 deaths

• Timing of next lift was determined by cylinders

LOK-TEST was subsequently used to estimate in-place 
strength before moving to the next lift

7
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Beam collapse 

• Beam collapse in a 
Russian grocery store

• 7 people killed
• Lab cylinders had 

passed the required 
strength 40 MPa

• Capo-Test showed 7-
9 MPa strength in-
place after collapse
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Rana Plaza collapse, Bangladesh
RANA PLAZA COLLAPSE, 
textile factory, Dhaka, 
Bangladesh, 2016

Another 3 story´s were 
build on top of the 
existing factory. Cracking 
in the walls happened 
prior to the collapse 
killing at 1,132 people and 
injured more than 2,500

• Lab testing unknown.
• Strength testing of the 

concrete quality 
months before collapse 
was made by rebound 
hammer, UPV and cores 
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Test Methods
ACI 228.1R-19

• 1. Lab cylinders for potential strength

In-Situ Test Methods:

• 2. Cores

• 3. Pullout

• 4. Rebound hammer

• 5. UPV (Ultrasound)
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1. Lab cylinders for 
potential strength

• Mix is cast in the 150 mm x 
300 mm steel forms

• Compacted in three layers on 
vibration table

• Stripped after setting

• Cured in water at 200 C

• Tested in compression at 28 
days (maturity days, M20)
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Uniaxial compression, middle
Triaxial Compression, end faces

Frictional 
Stresses

Zones of 
triaxial 

compression

Uniaxial
Compression zone
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Why is the strength from a 150 mm cube
higher than a 150 mm x 300 mm cylinder

?
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Specimen strength increase for decreasing L/D 
due to change from uniaxial to triaxial compression 
state in the middle of the specimen 

L

D

hence, the compression strength of a 150 mm cube is 
up to 30% higher than a 150 mm x 300 mm cylinder  
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2. Cores
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Cores
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Some Factors Affecting 
Core Strengths

• Core size

• Location of core

• Direction of coring

• Moisture conditioning

• Length-diameter ratio

• End preparation

• Embedded steel



CORES
• The ratio of the maximum aggregate size in the concrete 

to the diameter of the core has a significant influence on 
the measured strength when it is greater than about 1:3. 

• Testing a core with a nominal diameter of 100 mm and 
equal length (L/D=1) gives a strength value equivalent 
to the strength value of a 150 mm cube manufactured 
and cured under the same conditions. 

• Testing a core with a nominal diameter at least 100 mm 
and not larger than 150 mm and with a length to diameter 
ratio equal to 2.0 gives a strength comparable to a 150 mm 
by 300 mm cylinder manufactured and cured under the 
same conditions.

Preferred diameter of core is 100 mm

18
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Research Findings
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Moisture Gradients
Immediately After Wet Drilling

• Moistened concrete 
tends to swell

• Swelling is restrained 
by dry interior

• Results in internal 
stresses; outer region 
in compression

• Measured strength is 
reduced

Compression

Tension
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Effect of Core Conditioning
on Strength

CT003
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Moisture Conditioning
ASTM C42/C42M

• Wipe off drilling water, surface dry

• Place in watertight containers

• Wait at least 5 days between wetting due to 
drilling or sawing and testing

• Other procedure permitted when required by 
the “specifier of tests”
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ACI 214.4R for coring

In-place strength Core strength

Correction for L/D

Correction for D Correction for 
moisture content

Correction for “damage” 
due to coring

'

,c eq cf K f=Equivalent 
specified strength

Average in-place 
strength

Statistical factor
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0.85

core
c

f
f 
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LOK-TEST         CAPO-TEST

3. Pullout
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Testing the “interior” with pullout

Example:

Testing surface 30 mm 
deep, pullout force 30.0 
kN compared to 29.5 kN 
at 25 mm depth 

LOK-TEST

CAPO-TEST

Testing surface

Example:

Testing surface 
5 mm deep 39.0 
kN and testing 
surface 32 mm 
deep 38.8 kN 
pullout force 
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LOK-TEST
for new structures

• Install inserts

• Ready the testing

• Perform the LOK-TEST either to a 
required strength or to top-peak loading

• Transform the kN pullforce to compressive 
strength of lab cubes (or cores) or lab 
cylinders by general correlation
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25 mm

25 mm

LOK-TEST 

InsertDisc

Formwork

Stem

25 mm

25 mm
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LOK-Test Pullout 

Insert

Reaction
Ring

Pullout
Force

Insert
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Insert Hardware

Nailed to 

formwork

Attached to

formwork cutouts

Floated 

into surface



Nailing (L-40)

31
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Insert Hardware

Nailed to 

formwork

Attached to

formwork cutouts

Floated 

into surface



• Attach insert assembly to form

• Apply sealant

• Place concrete

• Test from below

Sealant

33



LOK-TEST for early and safe
loading operation

10 inserts tested in less 
than 1 hour

34
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Insert Hardware

Nailed to 

formwork

Attached to

formwork cutouts

Floated 

into surface
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Floating (L-49)
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LOK-TEST
Bring the compression machine to the structure

Loading Options: 
• Loading to a required 

strength and no further 
(no visible damage to 
the surface)

• Loading exactly to 
failure (shown), minimal 
damage to the surface

• Loading to past failure 
and pullout, dislodging 
the failure cone

For pre-installed LOK-TEST inserts, the test provides 
a reliable strength measurement in less than 5 minutes 

Max pullforce in kN, 
“H” showing peak value 



Capo giving immediate reliabel result, based on one 
correlation.
If needed, to be used in highly 
conjested reinforcement areas 
after location of the reinforment 

About 15 minutes per test for a trained operator
Minimum damage, easy to patch

Capo Testing on 
columns  to be 
further loaded. 
One observation 
is recommended 
to be the average 
of 2 or 3 Capo-
Tests 
Terracon, 
Houston, USA
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CAPO-TEST for existing structures
Bring the compression machine to the structure

38
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Other 
Examples

Translink, UK, 
Residual strength of tunnel segments

Trinity Square, Toronto, Canada
Strength for early loading

London, UK
Strength of industrial floor

Bridge Leznow, Poland
Residual strength

Cigar Lake Uranium Mine, Canada
Strength of gunite concrete

Great Belt Link, Denmark
Strength of cover layer

LOK-TEST LOK-TEST

CAPO-TEST

CAPO-TEST CAPO-TEST

CAPO-TEST
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Failure Mechanism
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Analysis by Jensen & Bræstrup

• Jensen, B.C. & Bræstrup, M.W.: ”LOK-Test 
Determine the Compressive Strength of 
Concrete”, Nordisk Betong, 3-1976

Conclusion:
”Plastic analysis may be applied to determine the 
load-carrying capacity of the concrete embedded 
disc which is pulled out under application of a 
counterpressure (LOK-TEST). It is shown that 
when the angle between the direction of 
deformation and the failure surface is equal to 
the angle of friction for the concrete, then the 
pull-out force is proportional to the concrete 
compressive strength”
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Analysis by Ottosen

• Ottosen, N.S.: ”Nonlinear Finite Element 
Analysis of Pull-Out Test”, Journal of the 
Structural Division, ASCE, Vol. 107, No ST4, 
April 1981
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Stress curves at 65% loading 

CL

Calculations are made for a uniaxial compressive strength of 31.8 MPa. Note the much 
higher  stresses (up to 50 MPa) are present right below the disc due to concentrated 
tri-axial  loading in this area.

“Strut” 
stress of 
20 MPa

Large compressive forces 
run from the disc in a band 
(“strut”) towards the 
support. The stress state 
in this strut is biaxial 
compression superimposed 
by small tensile stresses  

Stresses in 
MPa  are 
negative 
when 
stresses are 
compression

Ref Ottosen 
p. 597
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Compressive cracking, 98% loading,
Finite element analysis and experimental analysis

CL CL

Ref.: Ottosen, N.S.: Nonlinear Finite ElelementAnalysis of 
Pull-Out Test, JSD, ASCE, Vol. 107, No ST4, April 1981 

Krenchel, H. & Shah, S.P.: ”Fracture analysis of the pullout test”,           
Dept. of Structural Engineering, Technical University of Denmark,     
RILEM,    Materials and Structures, Dunod, Nov-Dec. 1985 no 108
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Conclusion by Ottosen

”It has been shown that large compressive 
forces run from the disc in a rather narrow 
band towards the support, and this 
constitutes the load-carrying mechanism. 
Moreover, the failure in a LOK-TEST is 
caused by crushing of the concrete and not 
by cracking. Therefore, the force required 
to extract the embedded steel disc is 
directly dependent on the compressive 
strength of the concrete”.
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Fracture analysis

Krenchel, H. & Shah, S.P.: ”Fracture analysis of the pullout test”, 
Dept. of Structural Engineering, Technical University of 
Denmark, RILEM, Materials and Structures, Dunod, Nov-Dec. 
1985 no 108

Krenchel, H. & Bickley, J.A. : ”Pullout Testing of Concrete, 
Historical Background and Scientific Level Today”,  Dept. of 
Structural Engineering, Technical University of Denmark, Nordic 
Concrete Research, The Nordic Concrete Federation, 1987

Krenchel, H. & Mossing, P.: ”LOK-Styrkebestemmelse af Beton, 
Brudmekanisk Analyse”,  Deprtment of Structural Engineering, 
Technical University of Denmark, Serie R, No 198, 1985
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Stress-strain curve from
uniaxial compressive test

Linearity       Compression Softening regime
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Load displacement curve 
for pullout test

Acoustic Emission

Linearity Compression Softening regime
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98% load level
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Situation at collaps
into the softening regime
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The three different stages of
internal cracking in a pullout

1. Crack at 
~30% load

2. Strut of 
multiple 
micocracking 
to max. load  

3. Collaps in the 
softening regime 
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Explanation

1. At about 30% of the load a circumferential 
crack is developed at a open angle running 
from the outer edge of the disc. This is 
where the liniarity is lost.

2. From thereon multiple microcracks are 
developed in a compression strut between 
the disc and the counterpressure 

3. A collaps happens into the softening regime 
at increased loading, forming the final 
pullout cone  
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LOK-TEST pullout failure

”Leaves” from the 
second crack pattern 
with the concrete in 
compession being 
intersected in the 
softening regime

Crushed material  
in the compression 
zone
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CAPO-TEST pullout failure

”Leaves” from the 
second crack pattern 
with the concrete in 
compession being 
intersected in the 
softening regime

Crushed material 
in the compression 
zone
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CAPO-TEST Failure

”Leaves” from the 2nd crack pattern with the concrete in 
compession being intersected in the softening regime
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LOK-TEST to CAPO-TEST

Line of equality
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NOTE
• LOK-TEST and CAPO-TEST measure the compressive 

strength of concrete (2nd crack pattern). This 
constitute the load-carrying mechanism

• The tests are NOT testing the tensile, NOR the shear 
strength, only the compressive strength 

• The tensile crack develops at about 30% of the 
ultimate load. This crack release stesses in the pullout 
area. Therefore, pullout values are not affected by 
inherent stresses in the structure (ref.: Jehrbo 
Jensen, J.K.: ”Influences of Stresses in a Structure 
on the LOK-TEST Pullout Force”, AUC, Deptm. of 
Building Technology and Structural Engineering, 
Aalborg, Denmark, 1990), next slide
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Jehrbo Jensen, J.K.: ”Influences of Stresses in a Structure on the 
LOK-TEST Pullout Force”, AUC, Deptm. of Building Technology and 

Structural Engineering, Aalborg, Denmark, 1990

200 mm cube

Conclusion: Stresses in the structure is not affecting the strength 
estimate with LOK-TEST  
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Clearance Requirements
ASTM C900

25 mm db

>150 mm >100 mm

≥ db
or

NMSA

Edge
distance

Reinforcement
clearance

Insert clearance
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Correlations
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Comparative testing,
reported 1978, DTU, Denmark

100

200

200

200

200

100

300

300

300

150

• Columns 1000 mm high, 300 
mm x 300 mm in square

• Five strength levels,10, 15, 

20, 25 and 30 MPa  

• Each batch consisting of 6 
columns and 10 standard 
cylinders

1000



Test  smart – Build right

63

Program
Five batches, ea with 6 columns:
• 3 columns crushed in 

compression for in-situ 
strength

• 3 columns tested  by cores 100 
mm dia. x 300 mm (4 pcs), UPV, 
Rebound Hammer and LOK-
TEST (4 pcs), at same location

• 10 Cylinders in each batch

5 x 6 columns

UPV,  Rebound 
Hammer & 
LOK-TEST 
before coring

Core

For 
crushing
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Refs (1) Poulsen, E.P.”Vurdering af betons styrke ved prøvning af udborede kerner, Del 1 
og Del 2, DIAB, Nov 1975
(2) Kierkegaard-Hansen, P.: ”LOK-TEST, Historical Background”, DIAB, Oct 1978

R=0.50 R=0.53 R=0.84

R=0.92 R=0.96
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Lok-Test Correlations before 1978
Refs:

[1] Kierkegaard-
Hansen, P., 1974, DIAB

[2] Rapport nr. S 3/69 
1974: Danish Technical 
University

[3] Jensen, O. & Leksø, 
S. 1976 / 1977, Danish 
Road and Bridge Lab & 
Danish State Railways

[4] Poulsen, P.E., Danish 
Institute of 
Technology & DIAB, 
1978.

[5] Leksø, S., Danish 
Road and Bridge  Lab. 
1976.

LOK-Strength
(kN)

Recommended:
Fm = 0.8 fc + 5
95% confidence, lower:
Fc = 0.7 fcc + 4

F (kN)
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Correlations before 1978
Refs:

[1] Kierkegaard-Hansen, 

P., 1974, DIAB

[2] Rapport nr. S 3/69 

1974: Danish Technical 

University

[3] Jensen, O. & Leksø, 

S. 1976 / 1977, Danish 

Road and Bridge Lab & 

Danish State Railways

[4] Poulsen, P.E., Danish 

Institute of Technology & 

DIAB, 1978.

[5] Leksø, S., Danish 

Road and Bridge  Lab. 

1976.

LOK-Strength
(kN)

Recommended:
Fm = 0.8 fc + 5
95% confidence, lower:
Fc = 0.7 fcc + 4

F (kN)



Correlation Testing after 1978

• Prepare cylinders (or cubes)

• Prepare 200 mm cubes with inserts

• Compact and cure under same 
conditions

2 x LOK-Test 2 x CAPO-Test

65
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Cylinder relationships
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LOK-TEST to cylinder strength,
1st major correlation 1987, DTU, Denmark
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fcylinder = 1.20 LOK – 4.1
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SD = 0.9 MPa 
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CAPO-TEST to cylinder strength, 
1st major correlation 1987, DTU, Denmark
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fcylinder = 1.18 CAPO – 3.4

Rxy = 0.98

SD = 1.1 MPa 
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Eighteen correlation between  150 mm dia x 300 mm standard 
cylinder strength fcyl and pullout (Lok or Capo) in kN

Methods
1. 150 mm x 300 mm cylinders, LOK-TEST inserts in the bottom 

pulled exactly to failure, cylinders capped and tested in 
compression

2. 150 mm x 300 mm cylinders, pullout centrally placed on 
vertical faces of 200 mm cubes

3. 0.3 m x 0.3 m x 1 m columns crushed in compression,  pullout on 
other matching columns

4. 150 mm x 300 mm cylinders, pullout on structures in-situ, same 
maturity

5. 150 mm x 300 mm cylinders and cores, pullout on panels, same 
maturity
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Eighteen correlations, 
standard cylinders to LOK-TEST or CAPO-TEST  

Author / ref. Correlation Range Method Country

1 Gay,G. fcyl = 1.08 Lok - 0.97 1-13 Mpa 1 USA

2 Bickley, J. fcyl = 1.10 Lok - 0.35 5-44 MPa 1 Canada

3 Krenchel, H. fcyl = 1.14 Lok – 2.16 3-33 MPa 2 Denmark

4 Krenchel, H. fcyl = 1.11 Capo – 1.02 3-33 MPa 2 Denmark

5 Krenchel, H. fcyl = 1.02 Lok – 0.54 5-50 MPa 2 Denmark

6 Jensen, J. fcyl = 1.09 Lok – 0.04 5-50 MPa 2 Denmark

7 Drake, K.D. fcyl = 0.96 Lok – 0.90 12-36 MPa 2 USA

8 Drake, K.D. fcyl = 1.47 Lok – 16.62 30-74 MPa 2 USA

9 Poulsen, E. fcyl = 1.20 Lok – 6.62 10-30 MPa 3 Denmark

10 Kierkegaard, P. fcyl = 1.24 Lok – 6.32 11-39 MPa 1 Denmark

11 Lekso, S. fcyl = 1.25 Lok – 7.40 20-55 MPa 5 Denmark

12 Lekso, S. fcyl = 1.41 Lok – 10.28 20-55 MPa 4 Denmark

13 Krenchel, H. fcyl = 1.32 Lok – 6.18 15-75 MPa 2 Denmark

14 Krenchel, H. fcyl = 1.33 Capo – 7.06 15-75 MPa 2 Denmark

15 McGee, R.L. fcyl = 0.95 Lok – 0.95 6-35 MPa 1 + 2 USA

16 Bickley, J. fcyl = 1.28 Lok – 4.51 3-45 MPa 1 Canada

17 AEC fcyl = 1.32 Lok – 11.53 40-110 MPa 2 Denmark

18 Bishr, H.A.M. fcyl = 1.25 Lok – 2.88 8-35 MPa 5 KSA
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18 correlations to cylinder strength
1990-2013

Remember: 
Compression of 
the cylinders 
were made on 
different 
compression 
machine
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Variations
Calibration Procedure, 
laboratory

Pullout
SV n

Stand.specim.                               
SV       n

Danish 9.4 % 2188 4.3% 1177

North American 7.5% 994 6.4% 994

Swedish/Dutch/English 6.8% 1180 6.2% 963

Structure, 
On-site testing

LOK-TEST
SV         n     

CAPO-TEST 
SV         n

Shotcrete 3.2% 310

Slabs, bottom 10.5% 5320 7.1% 35

Slabs, top 12.9% 955 9.3% 623

Beams & Columns 8.1% 677 8.0% 434

Walls & Foundations 10.1% 1020 10.4% 534

Dubious Structures 14.7% 1225 15.3% 3334

Ref.: Petersen (1994)
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General cylinder relation to
pullout strength by LOK/CAPO



Theoretical investigations relating LOK-TEST pullout force F in kN
to cylinder compressive strength fcyl in MPa,

compared to the General Correlation for cylinders fcyl = 0.69 F1.12
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Ottosen. N.S.: ”Nonlinear 

Finite Element Analysis of

Pull-Out Test”, Journal of the 

Structural Division, ASCE, Vol.

107, No.ST4, April 1981

Jensen, B.J. & Bræstrup, M.W.: 

”Lok-Tests determine the 

compressive strength of 

concrete”, Nordisk Betong 

2-1976

(F = 0.89 fcyl) 
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Cube relationships
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LOK-TEST to cube strength, 
1st major correlation 1983, CBI, Sweden
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CAPO-TEST to cube strength, 
1st major correlation 1983, Sweden
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13 Correlations between  150 mm cube strength fcube

and/or cores  (100 mm dia x 100 mm long) fcore in MPa 
and pullout load (Lok or Capo) in kN

Methods:
1. 150 mm cubes for compression test, pullout on vertical faces of 

150 mm cubes (or 200 mm cubes for high strength)
2. 150 mm cubes for compression test, pullout on vertical faces of 

150 mm cubes (for high strength kept in steel frame or kept in 
the steel mold)

3. 150 mm cubes and 100 mm dia x 100 mm cores for compression, 
pullout on panels in the top

4. 100 mm dia. cores  x 100 mm on vertical panels for compression, 
pullouts on panels in-situ

5. 100 mm dia. cores  x 100 mm on vertical panels for compression, 
pullouts on panels in the lab

6. 100 mm dia. Cores x 100 mm in-situ, Capo-Test in-situ

Assumption:
The 150 mm x 150 mm x 150 mm cube strength has the same 
compressive strength as drilled-out cores, 100 mm diameter, 100 
mm long 
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Author / ref. Correlation Range Method 

1 Johansen, R fcube/core = 1.28 Lok – 2.18 8-35 Mpa 3

2 Gelhard, R. fcub = 1.23 Lok – 2.46 12-64 MPa 1

3 Winden, N. fcube = 1.26 Lok – 1.89 3-48 MPa 1

4 Winden, N. fcube = 1.32 Lok – 3.07 18-50 MPa 1

5 Bellander, U. fcube/core = 1.34 Lok – 3.70 10-60 MPa 4 + 1

6 Bellander, U. fcore = 1.37 Lok – 4.57 10-60 MPa 5

7 Bellander, U. fcube = 1.56 Lok – 2.80 3-85 MPa 2

8 Bellander, U. fcube = 1.58 Capo – 2.66 3-85 MPa 1

9 Worthers, P. fcube = 1.42 Capo – 1.00 50-98 MPa 2

10 Moczko, A. fcore = 1.42 Capo – 4.20 20-50 MPa 6

11 Thun.U fcore = 0.98 Capo1.12 11-105 MPa 6

12 Price, W. F. fcube = 1.52 Lok – 1.49 42-92 MPa 1

13 Price, W. F. fcube =1.54 Lok – 5.00 35-108 MPa 1

13 Correlations between  150 mm cube strength 
fcube and/or cores  (100 mm dia x 100 mm long) 
fcore in MPa and pullout load (Lok or Capo) in kN
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13 correlations to cube strength

Remember: 
Compression of 
the cores / cubes  
were made on 
different 
compression 
machine
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General cube / core relation to
pullout strength by LOK/CAPO  
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The two general correlations
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Precision 
Data for calculation
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Precision

Precision curves for LOK/CAPO test, calculated with the average of
the standard deviation and with the pooled standard deviation.
LOK-TEST and CAPO-TEST has a precision of ±3 MPa for one test and
±2 MPa for two tests, based on the general correlations.
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Robust Correlations
Not affected by:
• Cementitious materials

• Water-cement ratio

• SCC mixtures

• Fibers

• Age

• Air entrainment

• Admixtures

• Curing conditions

• Age and depth of carbonation

• Stresses in the structure

• Shape, type or size of aggregate < 38 mm
➢ Lightweight aggregate, however, produce a significantly 

different correlation
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Conclusions
• The failure mechanism in LOK-TEST/CAPO-TEST is 

well understod. Compression occur in the strut between 
the 25 mm disc/ring, 25 mm deep, and the 55 mm inner 
dia. counter pressure on the surface, hence the pullout 
force is a direct measure of the compressive strength 

• LOK-TEST and CAPO-TEST gives the same pullout 
force on the same concrete quality 

• Correlations between laboratory specimens and LOK-
TEST or CAPO-TEST show robust general correlations 
to standard cylinders or to standard cubes / drilled out 
cores no matter what parameter is considered. The 
correlations have been investigated up to 40 mm 
maximmum aggregate size. Only for lightweight 
aggregates another correlation has been found  
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Conclusions, cont´d

• The most comprehensive and reliable physical 
correlations made until today are the ones by Krenchel 
and Bickley, slide 67-68 for cylinders and for cubes the 
ones by Bellander, slide 76-77

• They are reflected in the general correlations, slide 82

• For these correlations the precision of the strength 
estimate by LOK-TEST or CAPO-TEST is within ±3 MPa 
for one test and ±2 MPa for two tests, slide 83
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LOK-TEST and CAPO-TEST
examples and procedure
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Other 
Examples

Translink, UK, 
Residual strength of tunnel segments

Trinity Square, Toronto, Canada
Strength for early loading

London, UK
Strength of industrial floor

Bridge Leznow, Poland
Residual strength

Cigar Lake Uranium Mine, Canada
Strength of gunite concrete

Great Belt Link, Denmark
Strength of cover layer

LOK-TEST LOK-TEST

CAPO-TEST

CAPO-TEST CAPO-TEST

CAPO-TEST
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92Pullout on the Great Belt Link,Denmark
for QC of the cover layer 

CAPO-TEST in progress                                            
Note: insufficient curing protection by a thin, loose plastic sheet   

COMA-meter
COMA-Meter used
for maturity.
The LOK-TEST
or CAPO-TEST 
values, corrected
for maturity, had
to be minimum
90% of the lab 
cylinder strength
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Great Belt Link
Example, 6 CAPO-TEST performed

in a control section of one of the westbridge´s
pillars for QC of the cover layer

Ref: Pullout testing by LOK-test and CAPO-TEST with particular reference 
to the in-place concrete of the Great Belt Link, p.69 

1 2 3

456

CAPO test readings, 
kN

Compressive strength 
cylinders, Mpa

0.69*F1.12

41 44.2

36 38.2

40 43.0

42 45.4

40 43.0

41 44.2

Average, MPa 43.0

Std dev, MPa 2.51

K (natrella) 1.86

Lower 10th 
percentile, MPa 
(Danish method)

38.30



LOK-TEST for early and safe
loading operation

10 inserts tested in less 
than 1 hour

92



John Aubrey Bickley
D.Sc (Honoris Causa), P.Eng., FICE, FCSCE

Canada

LOK-TEST, the “HOLY GRAIL”

93
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• SAFE and EARLY stripping of 
forms using LOK-TEST for 
estimating in-place strength 
has been done in North 
America on about 400 major 
structures

• Earnings due to speeding up 
construction schedule 
reported to be about 0.2 to 1.5 
M Dollars

Strength for Formwork Removal

Scotia Plaza – Toronto, 
Canada.

Source: Bickley, J.A.: “How to Build Faster for Less – The Role of In-Place Testing 

in Fast Track Construction”, ACI, Spring Convention, San Francisco, 1994



20 Storey

Building

15 Storey

Headquar

te

30 Storey

Building

Twin

Towers

14Storey

Building5

3Storey

Centre

9Storey

Condom.

Savings (All Numbers are $/1000)

Interest 600 1750 188 NC NC 533 43

Earlier

Rental

200 NC 25 NC NC 466 40

Formwork 120 254 NC 75 NC NC NC

Reshoring NC NC NC NC NC NC NC

Winter

Heating

NC NC 114 (0.3/pour/

day)

NC NC NC

f1
c at 91

days

NA 50 38 62 23 NA NA

Design 120 NA NA NA NA NA NA

Overhead NC NC 20 NC NC NC NC

Sub-Total 1040 1825 385 137 NC 999 83

Costs

Concrete 201 320 152 56 93 20 0

Testing 152 38 24 10 14 10 4

Sub-total 35 358 176 66 107 30 4

Net Saving 10053 1467 209 71 NC 969 79

Accelerated construction, Savings to Owners

95
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LOK-TEST equipmemt

John A.Bickley, Canada: ”The Holy Grail”

Plus inserts
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CAPO-TEST 
for existing strucures
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CAPO-TEST Pullout 
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Prepare Concrete

2. Plane surface
100 mm dia.

1. Core hole
18.4 mm dia.

18 mm
25 mm

Dia 25 mm  

3. Cut slot

25 mm

r

10 mm
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Core Hole

100



Test  smart – Build right

103

Plane
surface

101
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Cut Slot

25 mm

103
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Cut Slot

104
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Cut Slot

105
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Insert Expansion Cone
and Coiled Split-Ring 

Coiled ring

Cone
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Ring Expansion Hardware

Coiled ring

Cone

Sliding disc

When assembling,
make sure the 
inner sharp edge 
of the coiled ring 
is against the 
cone surface 

Nut with 
base pullbolt

Coupling

107
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Expand Ring

Nut
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Expand Ring

Hold 
steady

Turn 
clockwise

109
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Pullout the Expanded Ring
against a 55 mm counterpressure
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Couple and
Apply

Pullout
Force

111
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Acceptable
Test

Sharp 55 mm 
diameter edge 

from 
counterpressure

112
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CAPO-TEST
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CAPO-TEST failure
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Capo-Test on shotcrete, 
Note the failure zone is unaffected by water 

needed during coring / recessing
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Comparative study Polish bridges
for increased loading

• Cores, sawcut, capped, tested after 5 days drying in lab 
conditions (100 mm dia x 100 mm cores)

• CAPO-Test in-situ, double amount of cores

• Schmidt Hammer in-situ, up to 20 locations, each 6 tests

• Schmidt Hammer on side of cores prior to compression 
tests

NOTE: All Schmidt Hammer results have been reduced 
by an ”Aging Factor” of 1.4 recommended by 
manufacturer. The ”Aging Factor” is not substatiated or 
explained by the manufacturer of the Schmidt Hammer
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COMA-Meter
CAPO-TESTing on Polish bridges



Wisna Bridge

35 years old

Zglobice Bridge

32 years old

Carbonation depth: 2 mm - 35 mm

Source: Moczko, A.: “Comparative Study of In-Situ Strength Measurements on 50 

Polish Bridges”, University of Wroclaw, Poland, 2007

Average

Cores

(MPa)   V (%)

CAPO-TEST

(MPa)    V (%)

Schmidt / Structure

(MPa)     V (%)

Schmidt / Cores

(MPa)    V (%)

Strength 32.8       9.5         33.5      11.7 55.9        16.4 44.5        15.1

Comparative Strength Estimates from 
50 Polish Bridges, examples  

119
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No.

Cores from 

structure

Capo-Test

on structure

Schmidt Hammer 

on structure

Schmidt Hammer

on cores 

MPa Av. 

of

MPa % dif MPa % dif MPa % dif

1 19.6 6 20.3 +3.4% 36.9 +88.3% 28.4 +44.9%

2 24.7 3 26.9 +8.9% 37.4 +51.4% 28.8 +16.6%

3 29.7 4 31.8 +7.1% 49.5 +66.7% 38.2 +28.6%

4 34.2 3 36.8 +7.6% 56.8 +66.1% 43.1 +26.0%

5 33.3 4 32.3 -3.0% 61.6 +85.0% 49.3 +48.0%

6 34.2 3 37.6 +9.9% 54.5 +59.4% 36.5 +6.7%

7 35.4 4 37.1 +4.8% 66.3 +87.3% 57.0 +61.0%

8 37.1 3 35.9 -3.2% 56.9 +53.4% 46.1 +24.3%

9 37.5 4 36.8 -1.9% 70.9 +89.1% 61.0 +62.7%

10 42.0 3 39.7 -5.5% 68.4 +62.9% 57.4 +36.7%

Avg. 32.8 33.5 +2.1 55.8 +70.0% 44.6 +36.0%

Comparative testing, Polish experience, bridges  20-30 years old, ref. A. Mozcko,, Wroclaw University
Note: The Schmidt Hammer results have been reduced by 1.4, the ”aging” factor recommended by the manufacturer
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Cores compared to CAPO

0.0
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0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Data

UCL

LCL

FIt

General Fit

Ccore = 0.79 Capo1.14

Rxy = 0.97

Standard deviation = 2.2 MPa

Capo-Test (kN)
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Comparison to the general 
correlation for cubes

Note that the correlation found                
Ccore = 0.79 Capo1.14   match closely the 
general correlation for cubes  Ccube = 0.76 
Capo1.16

As a 100 mm dia. core, 100 mm long gives 
a strength equivalent to the strength 
value of a 150 mm cube, the following 
general relationship may be applied:

Ccube = 0.79 Capo1.14
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Core, CAPO and Schmidt Hammer
strength estimates, 15 bridges
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Schmidt Hammer and CAPO
strength estimates, 15 bridges

In average, the Schmidt Hammer is overestimating 
the strength by 71%  

Mix specific  
for rebound 
hammer

General for 
CAPO
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Effect of carbonation on CAPO

100 mm dia x 
100 mm core

Depth of 
carbonation 

Avg. Core 33.9 MPa, Avg.CAPO 33.7 MPa, Diff -0.6% 
Avg. Carbonation Depth 13.1 mm

Ref: Moczko, (2016)

Conclusion: 
Neglectable effect 
from carbonation 
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Considerations using 
LOK-TEST / CAPO-TEST

• Testing depth is 25 mm, samples for coring are 
taken deeper in the structure

• If needed, inserts may be placed deeper than 25 mm 
from the surface, slide 26, the ”interior” 

• LOK-TEST / CAPO-TEST will never give higher 
strength estimates than lab testing

• LOK-TEST on slabs have shown up to ~10-15% 
higher strength of the bottom compared to the top 
surface, partly due to better compaction, and partly 
better curing at the bottom
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Considerations, cont’ed

• Capo-Test is unaffected by depth of 
carbonation (Polish data)

• Minimum distance to edges and corners 
of 100 mm has to be observed

• Minimum distance from the ”strut” to 
reinforcement ~ 10 mm

• Relationships have not been 
investigated for max. aggregate size > 
40 mm



Test  smart – Build right

130

Considerations
Quality of the cover layer protecting the reinforcement 
on new structures using modern concrete mixes:

Experience has shown that badly cured cover layer 
tested with pullout may give up to 20% reduction of the 
strength compared to cores or standard laboratory 
specimens. 

Experience has also shown that the electrical 
conductivity of the cover layer is increased 40%-50%, 
indicating a negative effect on the cover layer from 
craking, insufficient compaction and/or bad curing 
conditions on-site, increasing the chloride permeability.

To check this effect, LOK-TEST inserts may be 
embedded deeper in the structure, and surface planing 
prior to CAPO-TEST may be done at a required depth, 
slide 28.
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CAPO-Test vs. Cores
• Instant results alternatively to cores

• Cause only a small fracture cone hole compared 
to a 100 mm coring hole. 

• Does not require pre-planning of test locations

• Can perform test at any accessible location

• Permits testing of existing structures,

• ~15 minutes per test. 

• Portable equipment (electricity and water is 
needed)
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Summary
• LOK-TEST and CAPO-TEST are reliable methods 

for estimating in-situ compressive strength 

• Can be used for new construction and existing 
construction

• General correlations according to EN 12505-3: 
2005 and CS A23.2-15

• Following ASTM C 900-19 confirm general 
correlations for LOK-Test

• For CAPO-Test cores can be drilled out for 
comparison to the general correlation
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EN 12505-3: 2005:
It has been shown that for a given type of apparatus the relationship 
between pullout force and compressive strength is similar over a wide 
range of concretes and that a general correlation can be used with 
reasonable accuracy”

ASTM C 900-19: 
“For a given concrete and a given test apparatus, pullout strengths can 
be related to compressive strength test results”

CSA Group 2014,A23.2-15
“Pullout strength is correlated to compressive strength of standard 
cylinders. For a given configuration of insert, bearing system and 
depth of insert, there is a correlation between pullout strength and 
standard cylinder´s compressive strength” 

Standards mentioning the correlations
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Recent published papers  on CAPO-TEST

Aci.pdf

ACI publication: CAPO-TEST to Estimate             

Concrete Strength in Bridges. 
MATEC Web of Conferences 361, 0 

(2022) Concrete Solutions 2022 7006 

Concrete Solutions 2022 7006 

In-Place Estimation of Concrete Compressive 

Strength Using Postinstalled Pullout Test – A 

Case Study”, Journal of Testing and 

Evaluation, ASTM, August 31, 2018

https://www.germanninstruments.com/wp-content/uploads/2022/01/ACI-MJ-Capo-2016.pdf
https://www.germanninstruments.com/wp-content/uploads/2022/01/ACI-MJ-Capo-2016.pdf
https://www.germanninstruments.com/wp-content/uploads/2022/07/Practical-cases-pullout-method-in-place-compressive-strength.pdf
https://www.germanninstruments.com/wp-content/uploads/2022/07/Practical-cases-pullout-method-in-place-compressive-strength.pdf
https://www.germanninstruments.com/wp-content/uploads/2022/10/42.-Zhengqi-Desai-and-Wesley-IN-PLACE-ESTIMATION-OF-CONCRETE-COMPRESSIVE....pdf
https://www.germanninstruments.com/wp-content/uploads/2022/10/42.-Zhengqi-Desai-and-Wesley-IN-PLACE-ESTIMATION-OF-CONCRETE-COMPRESSIVE....pdf
https://www.germanninstruments.com/wp-content/uploads/2022/10/42.-Zhengqi-Desai-and-Wesley-IN-PLACE-ESTIMATION-OF-CONCRETE-COMPRESSIVE....pdf
https://www.germanninstruments.com/wp-content/uploads/2022/10/42.-Zhengqi-Desai-and-Wesley-IN-PLACE-ESTIMATION-OF-CONCRETE-COMPRESSIVE....pdf
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NOTE

In-Place Strength Without testing cores. 

https://www.germanninstruments.com/wp-content/uploads/2022/01/In-Place-Testing-without-taking-cores-the-Pullout-Test.pdf
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Costs CAPO-TEST vs. Cores

CAPO-TEST Core



Test  smart – Build right

137

User comment 

First, thanks for creating this wonderful test method! 
I would like to point out that for performing CAPO test we charge $250 per sample for 
typical existing structures where strength information is needed. We are generally testing 
minimum 3 or 4 locations. For a project where many tests were needed,  we would 
discount the pricing to about 50 percent off. On average it takes us 20 min per location 
depending on surface conditions

Why charge this much? Repairs and replacement parts are a little pricy at times and there 
is a considerable investment upfront.

$250 is still less than core sample extraction, patching,  conditioning,  capping and 
testing.  Extraction and patching alone is close to $250 these days. Plus $100-120 for 
testing.

Charging this much makes it more attractive for service providers.  Client reaction has been 
very positive.

Todd Allan, Radarview, USA
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Equipment CAPO-TEST, C-1000

C-101 Prep. – Kit  
+ tray

C-102 SV-Kit

C-112 Inserts

C-104 Pullmachine
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CAPO-TEST, C-2000
alternative, without suction plate
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Other systems for 
homogeneousness 

Rebound Hammer             Ultrasound (UPV)
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Factors Affecting 
Rebound Number

• Elastic modulus of concrete

• Aggregate type

• Air voids 

• Carbonation

• Surface texture

• Surface moisture condition

• Rigidity of test object

• Mix specific
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Elasticity and compressive strength 

Ref DTU, Denmark, 1987, 
Prof. K.V.Johansen: “coffee grounds”

Elasticity has a weak relationship to compressive strength with a large scatter

cfE 
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Rebound to cores,
case 1
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Ward, M.A. and Langan, B.W., Cement Concrete 
and Aggregates, 16(2), Dec. 1994, 181-185
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Rebound to cores,
case 2
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Comparison of Relationships
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Rebound Hammer related 
to cube strength 

Average relationships  
shown for granite and 
limestone aggregates and 
curing conditions (water 
and air) 

Ref: Tam, C.T.: ”Application 
of NDT in Appraisal of 
Buildings”, 4th Int.´l Conf. 
On Inspection, Appraisal, 
Repair and Maintenance of 
Buildings & Structures, 28-
30 March, 1995, Hong Kong 
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Schmidt Hammer and CAPO
strength estimates, 15 bridges

In average, the Schmidt Hammer is overestimating the strength by 71%, even with the 
recommended deduction of an “aging factor” of 1.4 recommended by Proceq

Without the “aging” factor reduction the estimate of the compression strength by the 
Schmidt Hammer would have been 99.4%, in average

Mix specific  
for rebound 
hammer

General for 
CAPO
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Schmidt Rebound Hammer
• Strength is not measured physically as it is with cores 

or LOK-TEST / CAPO-TEST pullout

• A rebound value is obtained, related not only to the 
Elasticity of the  material, but also Aggregate type, Air 
voids, Carbonation, Surface texture Surface moisture 
condition and Rigidity of the test object

• Correlation to strength can only be made by comparing 
the rebound numbers to cores for every structure

• Such correlations have great variations, and the 
relationship(s) obtained are not sensitive as they have 
no 45o slopes, with large scatter of results
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Strength Relationship UPV

( )4Vfc 

fc

Velocity
For mature concrete, large increase 
in  strength is accompanied by small 
increase in velocity, mix specific. 

EV Physics:

cfE Empirically:
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Elasticity and compressive strength 

Ref DTU, Denmark, 1987, 
Prof. K.V.Johansen: “coffee grounds”

Elasticity has a weak relationship to compressive strength with a large scatter

cfE 
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Lab relationship for a specific mix
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UPV (Ultrasound Pulse 
Velocity) related to cube 
strength 

Average relationships  
shown for granite and 
limestone aggregates and 
curing conditions (water 
and air) 

Ref: Tam, C.T.: ”Application 
of NDT in Appraisal of 
Buildings”, 4th Int.´l Conf. 
On Inspection, Appraisal, 
Repair and Maintenance of 
Buildings & Structures, 28-
30 March, 1995, Hong Kong 



Example
Aggregate Type

Ref: Bungey, 1982
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Factors Affecting UPV for 
Given Concrete Mix 

• Aggregate type

• Aggregate content

• Moisture content

➢ Saturated concrete 5 % greater UPV than dry

• Presence of reinforcement

➢ Perpendicular to pulse path

➢ Parallel to pulse path
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Windsor Probe
Penetration Resistance of Hardened Concrete by 

shooting a probe into the concrete and measure 

the pentartion depth



Test  smart – Build right

156

Correlations 

Bungey, 2002 Bungey, 2002

CBI, 1978CBI, 1978Malhotra, 1974
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Precision

Precision of Windsor Probe based on one mix specific 
correlation CBI Report 7869 compared to LOK/CAPO 
precision, general correlation, slide 83-84 
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ACI Committee 228
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In-Place Strength Without testing cores. 

https://www.germanninstruments.com/wp-content/uploads/2022/01/In-Place-Testing-without-taking-cores-the-Pullout-Test.pdf
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CONCLUSIONS
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Evaluation techniques by

Pullout, LOK-TEST / CAPO-TEST
Cores
Rebound hammer
UPV
Pull-off test
Maturity method

are dealt with in detail in workshops
www.ndtitans.com

as well as advanced methods
www.germanninstruments.com

http://www.ndtitans.com/
http://www.germanninstruments.com/
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Thank you for your attention

www.germanninstruments.com

www.NDTitans.com

http://www.germanninstruments.com/
http://www.ndtitans.com/
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